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Abstract—The elastic nonlinearity which leads to the acoustoelastic effect involves the introduction
of a strain energy function which is cubic in the strain and thus requires both second- and third-
order elastic constants. The complete set of nine second-order and 20 third-order elastic constants
for a rolled plate of 7039-T64 aluminum exhibiting orthotropic texture has been experimentally
determined from ultrasonic measurements and is compared to the constants predicted on the
basis of x-ray determination of the texture. The predictions are in reasonable agreement with the
measurements, but demonstrate the sensitivity of the x-ray technique to the single crystal constants
used in the evaluation. [t is also shown that the use of cubical samples for ultrasonic evaluation of
the third-order constants can lead to erroncous results.

INTRODUCTION

Acoustoclasticity is a nondestructive technique for the evaluation of active and residual
stresses within a structural component. With this technique being applicd more widely in
the ficld, as well as being investigated in the laboratory, it has become clear that the
anisotropy of the material involved plays a significant role in determining the ultimate
utility of the technique inits usual form (Pao ef al., 1984).

The acoustoclastic technique 1s based on the observation that the speeds at which
vartous clastic waves propagate through a material depend not only on the material’s elastic
stiffness but also on the amount of deformation or stress to which it is subjected. In the
usual approach, if a material’s elastic and acoustoelustic constants are known, and if
sutliciently precise measurements of velocity are made, the stress may be evaluated. We
note, however, that an alternative approach in which the clastic constants do not need to
be known has also been suggested (Lee et al., 1986 ; Man and Lu, 1987). The consideration
of only a matenal’s second-order elastic constants (SOEC) does not explain the observed
variiation of wave speed. When third-order elastic constants (TOEC) are taken into account,
the relationship between applied stress and the relative velocity change of the wave may be
quantitatively analyzed.

In the simplest case of an isotropic material, applying a plane state of stress causes the
velocities of waves propagating in the direction normal to the plane to vary linearly with
the magnitude of the stress. For the longitudinal wave, the velocity change is proportional
to the sum of the principal stresses. The changes in the shear wave velocities are related to
the stress in 2 more complicated way, but the difference in shear wave speeds, called
birefringence, is proportional to the difference of the principal stresses.

Texture may be defined as the preferred crystalline orientation which leads to a
material’s macroscopic anisotropy. The primary cffect of texture on acoustoelasticity is that
the textured matertal exhibits birefringence in its unstressed state. This means that the
measured difference in shear wave speeds is no longer proportional to the difference in
principal stresses. Texture also has the less widely recognized cffect that the acoustoelastic
constants themselves can display substantial anisotropy.

In the following sections, we compare the predicted and measured elastic constants of
a rolled aluminum plate. We first introduce the acoustoclastic equations. Then we give a
brief summary of the work which allows a material’s elastic and acoustoelastic response to
be evaluated from a knowledge of the material parameters and orientation distribution of
the constituent crystals. This is followed by an experimental investigation into the utility of
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this analysis for a particular aluminum alloy (7039-T64). The complete sets of exper-
imentally obtained and predicted constants are presented for the material.

THEORETICAL ANALYSIS

1. Acoustoelasticity

The equations governing acoustoelasticity (see Pao er ul.. 1984, for example) are based
on the behavior of an infinitesimal disturbance superposed on a material subject to a finite
deformation. The material under consideration must have a nonlinear stress-strain relation
to account for the observed variation in elastic wave velocity with applied stress. This is
accomplished by allowing the expression for the material’s stored energy to be a cubic
function in the strain. thus requiring the usual set of second-order (Lamé) constants and a
set of third-order (Murnaghan) constants for the complete characterization of the material.

In describing the acoustoelastic response, it is convenient to introduce three con-
figurations of the body: the undeformed reference configuration x, in which a matenal
particle is located by the position vector X the homogeneously deformed configuration »
in the absence of the superposed disturbance, in which the particle is located by the position
vector x; and the current configuration x” in which the particle is located by the position
vector X'. Given that &” differs from « by an infinitesimal deformation, we write

X =X+u 1]

where u s the displacement vector associated with the propagating wave. The deformation
gradient in & is refated to that in w as

b cx;  dx, 5 u, Fos -
4 T (j.*’_‘ - OXA ¢ 7] + (1.\', - jd (‘ 1 +“:‘/)- (~)

Similarly, the Lagrangian strains in k" and « are related as
£y = é(F;AF:ll—lj,4a) = E.48+F1AF/B(~'1/ 3)

where ¢, is the increment in strain caused by u as seen from w. Since u is taken to be
infinitesimal, we fet

e, = Yu,, +u,,). (4)

The constitutive relation between stress and strain in w is introduced through the
strain energy function @ as

po® = gc,w('nE,mE(‘o + %C,-IB('DI:'FEAHE(.’I)EEF (5)

where py 1s the mass density in w, and the coctlicients Cuep and Cypeper are the material’s
sccond- and third-order clastic constants, respectively. The constitutive relation for the
Cauchy stress 7, is given in terms of @ as

b rF S () (6)
dal g AP

J Al oy ('E,u; Po

T, =
where J = det F = py/p and p is the mass density in k. An entircly analogous expression
holds for the stress T, in & if E and F are replaced by E" and F’ in eqns (5) and (6).

The acoustoclastic response is evaluated by considering the equations which govern
the motion «’. In terms of the Cauchy stress these equations may be written as
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T,

= P4 (7

where body forces have been neglected. Linearizing eqn (7) in u and its gradients leads to
the partial differential equation in u of the form

(C.,u*‘ T.0 i)ty = pii, (8)

where what may be called the ““current stiffness™ C,jk, is

. P *(pyd)
ikt = —F FgbocFip === 9
C/k/ fo AL ;8L kCHID CE_.(B EE(‘[) ( )
By using eqn (5), we may rewrite eqn (9) as

- p
Cl/kl = p_ 1:1,4 F/BFE('[:ID(CAB('D + C,AB('DEFEEF)' (lo)

0

If u is taken to have the form of a plane wave,

u, = U, et an

where U, is the amplitude, & the wave number, n the unit vector in the direction of
propagation, and ¥ the wave speed, then egn (8) becomes

[(C‘,u‘*‘ T./%k)";"/‘l’ l/’:‘s/k]Uk = 0. (12)

Equation (12) thus represents an cigenvalue problem from which ¥ can be evaluated for
given propagation direction n, with the cigenvector U, being the polarization.

Now, if the dependence of ¥ on stress is measured for waves propagating and polarized
in particular directions, the solutions of eqn (12) can be used to evaluate the elastic constants
of eygn (5). Some combinations of these constants are commonly evaluated experimentally
from measurements of the wave velocity in the undeformed material and changes of velocity
during the application of known uniaxial stress. The task of completely characterizing the
acoustoelastic behavior of a rolled metal is, however, formidable since there are nine
independent SOEC and 20 independent TOEC which must be determined. Indeed the
only such characterization for an orthorhombic material was presented by Haussiihl and
Chmiclewski (1981) for calcium formate.

2. Orientation distribution function

As an alternative to the ultrasonic characterization of the material, a method for
estimating an aggregate’s elastic constants from knowledge of the elastic constants of a
single crystal and the orientation distribution of crystallites in the aggregate has been
proposcd by Johnson (1985). The orientation of a particular grain in the aggregate is given
by the Euler angles ©, ¢, and ¢. The orientation distribution function (ODF) for all of the
grains is a function whose integral over a range of Euler angles gives the probability that
any grain will be within that range of possible orientations. In this work the material texture
is assumed to be homogencous so that the ODF is independent of position within the
material.

As described in Roe (1965, 1966), there exists an harmonic expression for the dis-
tribution function involving the Euler angles and real texture coeflicients W,,,, which must
obey certain interdependencies in order to satisfy the assumed cubic crystal and ortho-
rhombic aggregate symmetries (Johnson, 1985). Under the assumptions used in Johnson
(1985). the aggregate’s SOEC and TOEC introduced in eqn (5) are related to the crystallites’
clastic constants through the ODF. This result is given in detail in Johnson (1985) for the



612 G. C. Jonnson and W. C. SPRINGER

case of cubic crystal and orthorhombic specimen symmetries and may be summarized in
the form

— - * ok
Cisco = Clacn+Cl3co

_ * *
CJH(‘DEF - C!S(‘D[;’F+C48('DEF' (13)

The terms C%zcp and C¥gper are the crystallite stiffnesses referred to the grain’s principal
symmetry axes. The C%3-, depend on a single combination of the crystal’'s SOEC and on
three texture coethicients referred to above: Wy, W'y, and By, The Cfcper depend on
three combinations of the crystal's TOEC and on a total of seven texture coeficients : the
previous three, 3. oo, Basg. and B, Ttis of interest to note that the combinations
of SOEC and TOEC which enter C%%, and C*}cper are measures of the crystalline
anisotropy since these combinations vanish for an isotropic material.

EXPERIMENTAL PROCEDURES

1. Ultrasonic technique

The ultrasonic measurements were of two basic types: measurements of absolute
velocity in the unstressed material (which led to the SOEC) and measurements of relative
velocity change under the application of uniaxial stress (which led to the TOEC). The
double-pulse echo system described by ¢ et af. (1979), and which operates in a phase-
locked loop, was used for both types of measurements. In this system, the frequency of an
ultrasonic carricr signal ts varicd to maintain a constant phase difference between reflections
from the front and back faces of a material specimen. During the application of stress, the
frequency change can be related to the velocity change through a measurement of the
change in path length. Thus, the change in frequency measured with this system is just the
change in “natural velocity™ defined by Thurston and Brugger (1964).

Six of the nine SOEC may be obtained by measuring the velocities of pure mode waves
propagating in the .Y, X, or X'y directions in the unstressed material. We have chosen Y
to correspond to the plate’s rolling dicection (RD), XX, to the direction normal to the plate
(ND), and X, to the plate’s transverse direction (TD). The remaining three SOEC may be
determined from the velocities of erther quastlongitudinal or quasishear waves propagating
in off-axis directions. Expressions for these constants may be obtained from the charac-
teristic equation (12) under the no-stress condition.

Evaluation of the TOEC requires that the relative change in wave speed be measured
during the application ol & known stress. Eighteen of the 20 independent TOEC can be
determined by measuring the chunges in the speeds of the pure mode waves propagating
along the principal directions of anisotropy with loading along one of the principal directions
(Springer, 1986). Specifically, let Dy be the relative velocity change of a wave propagating
along X, with particle motion along X und with uniaxial stress applied along X,. By
solving for the velocities in the characteristic equation which results from egn (12), Dj. can
be expressed as

Vol Carncne + 080 u-C
[),‘“ _ Z < ‘B{‘.“f.l{(,.*-‘ 489 8¢ _RK{IU +().Rly+()'k('>£([fk' (14)

K-t 2Csenc

where E4Q is the normal strain in the X, direction associated with the stress acting along
X,. The only summation in eqn (14) is that which explicitly involves R. For a particular
wave type (that is, for particular values of B and C). egn (14) gives three equations associated
with loading along the X, X.. and X, dircctions. From these, the third-order constants
Ciyvacacs Crapeses and Ciygege can be calculated.

Two TOEC, C 2251 and Ciy1yy2. do not appear in any of eqn (14). Their evaluation
requires either loading or wave propagation in a dircction other than a principal direction.
To obtain expressions involving Cyy..5,. a wave propagating in the (1, 1,0) direction with



Measured and predicted second- and third-order elastic constants of a textured aggregate 613

loading in the .Y, direction is used. The explicit expression for this relative velocity change
D, . is found to be

_AE(BHHFC20)

D G+ H)

Ex; (13)

where the coefficients 4. B. F. G. and H contain previously determined SOEC and TOEC.
The "+ equation applies to the quasilongitudinal wave. while the * — " equation applies
to the quasishear wave polarized in the 1-2 plane. To obtain a relation that involves Caqyy -t
we consider loading in the (1.0.1) direction. A shear wave propagates in the (1.0, —1)
direction and is polarized in the .Y, direction. From this condition we obtain the expression
for the relative velocity

Dy =JE | +KEyy + LE+(M+2C3000:)En (16)

where J, R, L. and M are expressions containing previously determined SOEC and TOEC.
We note that this expression for Cayy ;s the only one in which a shear strain. £, . appears.

Because of the need to have loads applicd and waves propagate in a variety of directions,
several different samples were required. One of the loading conditions involved uniaxial
stress applicd in the plate’s ND (.Y, direction). The thickness of the plate (nominally 25
mm) required that this stress by applied in compression since this dimension is too small
for a tenston specimen. Thus, compression tests were selected for all loading conditions.

Imtially, three cubical samples were thought to be suflicient: one which would allow
toading and wave propagation in any of the principal directions, one which could be toaded
in the Y, direction with wave propagation possible in the directions (1, £1,0), and one
which could be loaded in the direction (1.0, — 1) with wave propagation possible in the
directions (1,0, 1) and (0, 1.0). In order to allow waves to propagate along the direction of
loading, a spectal compression grip in which the ultrasonic transducer could be mounted
was designed and built, The acoustoclastic response observed on the cubical sample did
not, however, correspond to that observed during untaxial tension on a standard “dog-
bone™ tension specimen of the same material. Rather, the results from the compression tests
were roughly 30% fower than those from the tension tests. A more extensive examination
of this situation indicated that the stress state in the cubical sumple under the applied
compressive load was not the assumed uniform state, but one in which the bulk of the load
was carried along the outer edges of the cube.

An experimental investigation of this result was performed on a sample of 2024-T351
aluminum with square cross section. Measurements of acoustoelastic response were made
as the length of the sample was reduced. The initial sample dimensions were 25 mm in each
of the ND and TD. and 170 mm in the RD. The acoustoclastic constant (relative frequency
change per unit of applied stress) was determined for the longitudinal waves with the
transducer placed in the central region of the sample. Then the block was shortened by
removing equal amounts of material from the ends and the acoustocelustic constant was
remeasured. This process was repeated until a cubical sample was obtained. To allow
the results to be generalized to other cross-sections, the data are presented in Fig. | as
acoustoelastic constant vs slenderness ratio (specimen length divided by radius of gyration).
The measured acoustoelastic constiant viries by only 2% for slenderness ratios above 8 and
then falls off dramatically for slenderness ritios less than 8. The acoustoelastic constant for
the cubical samplce is 24% below that for the original sample.

Therefore, three separate samples were required for the principal direction tests to
allow specimen lengths in the loading directions to be sufficient to provide a uniform
stress state. All the samples actually used in the cvaluation of the TOEC had a minimum
slenderness ratio of 12. Each specimen had faces machined parallel in conformance with
ASTM standards for compression testing and then sanded smooth.

In order to achicve the necessary slenderness ratio for the case of loading in the ND,
a composite sample consisting of three sections glued together with a structural epoxy
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Fig. 1. Acoustoelustic constant vs stenderness ratio for 2024-T35 1 aluminum.

adhesive was used. A test was conducted on a well characterized sample of 2024-T351
aluminum in which a section was cut out and then glued back in. The remeasured response
was in agreement with the original response, thus validating our procedure. As a final
verification of our method, we compared the acoustocelastic responses of a long compression
sample and a standard tenston specimen. Two such tests are shown in Fig. 2 for loading in
the RD with longitudinal waves propagating in the ND and TD. The differences between

i/

the results for tension and compression are within 5% in each case.

2. x-Ray measurements

The first step in the prediction of elastic constants from x-ray diffraction studies is to
obtain pole figures. For cach pole figure, x-rays from a copper source impinge upon a flat
sample of the subject aluminum at the Bragg angle corresponding to the {222}, 1220},
{200}, or {311} planc of interest. The intensity of the reflected x-rays is measured and
stored as the sumple is rotated through a spiral pattern. To first approximation, the intensity
of diffracted x-rays at any given orientation is proportional to the number of crystallites
that have the specific plane of interest aligned normal to that orientation. Plotting these
intensities on o two-dimensional projection creates the pole figure for that plane. This
process yickls an incomplete pole ligure since accurate measurements cannot be made
beyond a tilt angle of around 80 degrees.

Three sumples were prepared trom the aluminum plate such that the major surfaces
of the sumples were perpendicular to the RD, ND, and TD. The surfiaces of the specimens
were polished to prevent machining damage tfrom affecting the data. It is possible to
construct one complete pole figure from measurements on three samples, but this was not
needed. Rather, the three sets of meusured pole figures were “inverted™ independently to
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Fig. 2. Relative frequency change vs applied stress for 2024-T351 aluminum in tension and com-
presston in the RD. Sceond letter of the laubel denotes propagation direction of the Tongitudinal
wave.
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obtain the three scts of ODF cocfficients using a series of programs based on algorithms
by Pospiech and Jura (1974).

RESULTS

Pole figures were measured for the {222}, {200}, ;220}. and {311} crystallographic
planes. The ODF coefficients for | < 22 were evaluated for each sample orientation by the
“inversion” of the four pole figures. As a check. the coefficients were used to reconstruct
the individual pole figures. The experimental and reconstructed pole figures for the {222}
plane are shown in Figs (3u) and (b). respectively, and those for the {200} plane are shown
in Figs 4(a) and (b). Evenly spaced contours of multiples of random distribution (m.r.d.)
are noted on the pole figures. The pole figures for the {220} and {311} planes are similar.
For each plane shown. the pole figures measured from the three differently oriented samples
are arranged to demonstrate the consistency of the observed texture.

In all cases. the two-fold symmetry about the in-plane axes is clearly evident and the
data indicate a fairly strong and consistent texture. The reconstructed pole figures agree
well with the original data qualitatively, although the magnitudes of the texture peaks are
substantially lower. However, the maximum m.r.d. levels for all reconstructed pole figures
of any one plane are in good agreement, indicating the consistency of the experimental
data. Only the first seven coctlicients are used to calculate the clastic constants, and these
coctlicients are shown in Table 1. Note that the sets of coctlicients do not display any
apparent consistency from one sample to another since each set is associated with a different
sample orientation.

The measured absolute velocities for the 7039-T64 alloy are listed in Table 2. The
density of the material, required to evaluate the SOEC from these velocities, was determined
to be 2750 +5 kg/m' with a Joly balance. Since the data in Table 2 are theoretically
symmetric with respect to the interchange of propagation and polarization directions, the
appropriate shear wave speeds were averaged in evaluating the SOEC.

(b)

Fig. 3. Experimental (@) and reconstructed (b) pole figures for the {222} crystallographic plane of
7039-T64 aluminum. Contour values are given as m.r.d. ; contours are equally spaced.
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Fig. 4. Experimental () and reconstructed (b) pole figures tor the 1200 crystallographic plane of
7039-T604 aluminum. Contour values are given as mord,  contours are cqually spaced.

Tuable t, Coctlicients of the QDI B, toe | +7 6 tor
7039-T64 aluninam

Wom

In ™ ND R
400 - (.0086 —0.0022 -0.0017
420 —0.0002% 0.0025 €.0043
440 0.00071 —0.0071 —0.0039
600 -0).0030 0.0037 —-1.0037
60 —0.0014 0.0036 —0.00135
640 0.001)2 0.0020 0.0012
66() (.008Y —0.0025 —-0.000357

Table 2. Experimentil wave speeds inunstressed  7039-Tod

aluminum
Propagation Polarization Veloaity (ms)

direction direction (£12my)

{ | 6322

| 2 3127

| 3 3063

2 i 9

2 2 6294

2 3 3074

3 | 3060

3 2 3098

3 3 6336
(1, 1. 0) (L1, 0 6308
(Lo (.o h 6293

1. h (1A 6291
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Table 3. Experimental values of the slope of relative frequency change vs stress curves in
7039-T64 aluminum

Propagation Polarization Loading Slope Uncertainty
direction direction direction (TPa™") (TPa~")
1 l 1 —-59.7 L5
1 l 2 9.66 0.15
1 i 3 15.6 0.3
2 2 l 16.7 0.1
2 2 2 —68.2 1.5
2 2 3 13.2 0.1
3 3 [ 12.3 0.15
3 3 2 145 0.1
3 3 3 —66.4 1.3
3 2 l 14.6 0.3
2 3 l 14.1 0.3
3 2 2 —26.8 0.3
2 3 3 —242 04
3 l 1 -204 0.15
l 3 2 15.8 0.3
3 | 2 14.7 0.25
l 3 3 ~339 03
2 1 1 —41.2 0.3
[ 2 2 -98 0.3
l 2 3 16.5 0.4
2 | 3 16.3 0.9
(Lon 2 (1.0, -0 247 0.25
(L 1L0) (1o 3 15.7 0.15
(nm (=10 3l 18 0.2

The experimentally determined acoustoelastic constants, given as relative frequency
change per unit applied stress, are listed in Table 3. These values are the slopes of the linear
least squares fits to the actual data points gathered. In Fig. 5 we show a set of such data
for the pure mode longitudinal waves propagating perpendicular to the direction of loading.
The labels on the curves in this figure give the loading direction followed by the propagation
direction. We note that for an isotropic material all these curves would be identical.

Table 4 contains the SOEC, and Table § the TOEC, ¢valuated by the ultrasonic and
x-ray techniques. For the method involving the ODF coetlicients, we used single crystal
data at 298 K from two sources: Thomas (1968) and Surma and Reddy (1972). These
clastic constants are presented in groups within which all entries would huve the same value
for an isotropic material. The extent to which the values vary within a particular group is
thus one indication of the degree of anisotropy exhibited by the aggregate. The constants
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Fig. 5. Examples of relative frequency change vs applied stress curves for longitudinal waves in
7039-T64 aluminum. First letter of the label denotes the loading direction, second letter denotes
wave propagation direction.
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Table 4. Ultrasonic and x-ray estimates of SOEC of 7039-T6 aluminum given in GPa

Cysep (GP2)
Uncertainty x-Ray Uncertainty x-Ray Uncertainty
ABCD Ultrasonic {%) {Thomas) (%} {Surma and Reddy) (%}
1t 109.9 0.5 {113 0.2 13 0.3
nxe 108.9 0.5 113 0.3 i 0.1
3313 1104 0.5 12t 0.2 1120 0.2
122 56.6 20 S8.3 0.1 38.6 0.2
1133 56.9 20 577 0.3 576 04
2313 56.6 2.0 57.7 0.3 579 0.1
2323 26.2 0.5 256 11 258 0.3
313 258 0.3 256 1.1 255 0.8
{212 268 0.5 26.4 0.3 26.5 04

determined from the x-ray analyses arc averages of the results from the three sample
orientations. The percent variation noted in Table 4 for an ultrasonic value is the standard
deviation calculated from the least squares fit to the ultrasonic data. The variation for an
x-ray value is the standard deviation among the three values of each constant obtained
from the three sets of differently oriented ODF coefficients.

In Table 4 it can be seen that the SOEC from the two sets of x-ray values agree well
with each other and generally agree with the ultrasonic results. The results in Tuble 5
indicate that the third-order response predicted from the ODF coctlicients is generally more
anisotropic than that measured ulftrasonically. That is, within each group there is more
vartation among the x-ray values thun among the ultrasonic values. Further, both techniques
indicate that this material is only slightly anisotropic in its SOEC, but its TOEC display
substantial anistropy. [t should also be noted that while in some groups of the TOEC (C,
D, and the off-principal-axis constants) there is generally good agreement between the two
techniques, in others (A and B) there is rather wide variation. In group A, in fact, there is
less anisotropy shown in cither set of ODF-determined constants than those determined
ultrasonically.

There are several possible explanations for the variation between the ultrasonic and x-
ray constants. Among these, the most plausible are that the single-crystal constants used

Tuble 5. Ultrasonic and x-ray estimates ol TOEC of 7039-Té4 aluminum given in GPa

Coscnsr (GPa)

Uncertainty  x-Ray  Uncertainty x-Ray Uncertainty
Group ABCDEF  Ultrasonic (%) {Thomus) (Ya} {Sarma and Reddy) (Yo}
A [RRERE — {450 3 — 1404) 5 — 1590 2
222200 ~ 1580 ~ 1350 7 — 1490 15
333333 -~ 1610 - [400 2 - 1570 3
B 22 ~370 4 - 180 25 =200 1y
[ IRRE2) - 300 - 279 5 - 350 12
222211 — 340 - 250 12 —340 14
232233 - 370 - 270 10 ~330 8
3333 —-410 -210 20 — 260 12
33332 ~ 380 -210 20 =270 14
C 112323 - 130 4 - 110 17 — 150 12
223131 -130 - 120 ts -~ 160 21
331212 - 120 -75 3t - 100 29
D [RRIRT —~ 280 2 - 270 2 — 290 3
e —330 - 260 io =290 6
222323 -290 - 280 3 -320 4
2 —240 - 250 12 ~270 6
332323 —290 - 240 28 -230 i}
3333t -320 - 300 26 - 1350 9
12233 —63 20 — 6 4 —-55 5

2332 — 110 i - 96 3 -93 3




Measured and predicted second- and third-order elastic constants of a textured aggregate 619

Tabie 6. Combinations of ultrasonic estimates of SOEC given in egns (17) and (18) for 7039-T64 aluminum,
Values are in GPa

4 B C C. cﬂa‘Cdaca Cuu“caaaa C,,(-C—C,4(—C CBCHC_CJ(‘AC
1 2 3 29.8 1.0 -0.3 0.4
3 1 2 3L 0.5 0.0 0.6
2 3 l 304 -15 0.3 -1.0

in the ODF-based calculations are not those of the 7039-T64 alloy and that the texture is
not uniform, but instead varies through the thickness of the plate. As can be seen in Table
S. the calculated constants are extremely sensitive to the single-crystal data. The single-
crystal elastic constants taken from Thomas and from Sarma and Reddy were both for
aluminum of between 99.95% and 99.99% purity. The alloy we used. however, contains
up to 4.5% zinc, 3.3% magnesium. 0.4% manganese. and 1% additional elements: it is
reasonable to expect that the SOEC and TOEC of this alloy would differ somewhat from
those of a high purity aluminum. Given the severity of the material texture, the presence
of a texture gradient would tend to reduce the anisotropy in the ultrasonically determined
constants. In addition, for any TOEC found by ODF analysis in group B or C, there is
substantial disagreement among the three values making up the average.

Evidence that both of these factors may be involved is found by considering the
relations which should exist among the aggregate’s SOEC. Specifically, the SOEC derived
from a homogeneous texture should be related as

Corinn=Cann = CTi2: = Clyy (A # B, no summation) (17)
and

(‘,41,-!.4 - C‘Illlllll = CIHI(‘(' - C.Li(‘(' = ("li('ll(' - CA("A(' ('1 # B # (') (18)

In Table 6 these combinations arc presented for the ultrasonically measured SOEC. Since
the value of C¥ ;. —C%¥;: 15 32.1 GPa, we find that the measured data and the assumed
single crystal data do not agree. Further, the results of calculating eqn (18) with the
measured data as shown in Table 6 indicate inconsistency with the assumption that a single
ODF governs the entire body.
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